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The Influence and Interpretation of Surface Parameters
for Wetting Transitions in Ternary Mixtures1

C. J. Boulter2,3 and F. Clarysse2,4

Starting from a microscopic Hamiltonian defined on a semi-infinite cubic lat-
tice, and employing a mean-field approximation, the surface parameters rel-
evant for wetting in confined ternary mixtures are derived. These are found
in terms of the microscopic coupling constants, and yield a physical interpre-
tation of their origins. In comparison with the standard expression for the
surface free-energy density, several new terms arising from the derivation are
identified. The influence of the surface parameters on a predicted unbinding
transition in a mixture of oil, water, and amphiphile demonstrate that exist-
ing results are robust to the addition of the extra surface terms.

KEY WORDS: complex fluids; lattice models; mean-field theory; wetting
transitions.

1. INTRODUCTION

A popular starting point for the study of wetting or unbinding in both
simple and complex fluids is the appropriate Ginzburg-Landau (GL) the-
ory. In particular, for the case of wetting of a substrate in the plane z=0
by an adsorbate, the GL theory is based on a surface free-energy func-
tional of the form,

HGL[φ]=
∫

r�0

ddr {LV [φ,∇φ, . . . ]+ δ(z)LS [φ, . . . ]} , (1)
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where φ(r) is the bulk order parameter and d is the spatial dimension.
For the case of simple fluids φ represents a local density, and LV ≡
LV [φ,∇φ] = K(∇φ)2/2 + f (φ) where K > 0 and f (φ) is a double-welled
bulk free-energy density with two equal minima at coexistence. In this case
the substrate-adsorbate energy is usually accepted to take the form

LS ≡LS [φ1]=−h1φ1 −gφ2
1/2, (2)

where φ1 =φ(y, z=0) is the surface order parameter, h1 is the surface field,
and g is the surface-coupling enhancement [1,2]. The motivation for this
expansion is not clear a priori since, in general, φ1 is not anticipated to
vanish on approach to the critical temperature Tc; however, derivations
based on lattice mean-field theory broadly support the expansion [3].

In this paper, we are primarily interested in ternary mixtures of oil,
water, and amphiphile [4]. Such mixtures are predicted to display a wide
range of different structures, with bulk mean-field phase diagrams cap-
turing many of the features found in experimental studies. For example,
at low amphiphile concentrations a monolayer of surfactant molecules is
formed at the oil–water interface leading to a decrease of the surface ten-
sion. As the amphiphile concentration is increased, a number of distinct
structured phases are possible, such as the lamellar phase which consists
of regular one-dimensional arrays of monolayers separated alternately by
oil-rich and water-rich domains. If this array is disordered, one instead
obtains the microemulsion phase. One can use a single scalar order param-
eter model of the form of Eq. (1) to model these fluids, with the order
parameter φ(r) interpreted as the local concentration difference between
oil and water.

Due to the presence of small, or even negative surface tensions in ter-
nary mixtures, the simple model discussed above can become unstable so
that higher-order gradient terms are required leading to an expansion for
LV of the form,

LV ≡LV [φ,∇φ,∇2φ]= c(∇2φ)2 +g(φ)(∇φ)2 +f (φ)−µφ, (3)

where the amphiphile degrees of freedom have been integrated out but
with their properties influencing c, f , and g. The bulk free-energy density
f (φ) has three minima corresponding to homogeneous oil, water, and mi-
croemulsion phases, while µ is the chemical potential difference between
oil and water. From scattering experiments it is known that g(φ) is pos-
itive in the pure oil and water phases, but may be negative in the micro-
emulsion phase. In contrast c is always positive, stabilizing the system, and
for simplicity may be assumed constant.
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For studies of confined ternary mixtures the substrate-adsorbate
energy density has been proposed to take the form (employing conven-
tional notation for ternary mixtures),

LS ≡LS [φ1,∇φ1]=µsφ1 +ωsφ
2
1 +gs(∇φ1)

2, (4)

with ∇φ1 = ∇φ|z=0+ the local gradient of φ [5,6]. Here the local surface
field (or chemical potential) µs describes the preference of the wall for one
of the phases, while ωs is the analogue of the standard surface enhance-
ment term. The gradient term (with coefficient gs) is required for correctly
determining the wall conditions associated with minimizing the GL free
energy. The main purpose of this work is to test the validity of Eq. (4) by
deriving connections with the parameters of an appropriate lattice model.
In particular we seek to find a physical interpretation of the parameter gs .

The remainder of the paper is arranged as follows. In the next section
we calculate the surface contact energy in terms of the microscopic cou-
pling constants of a semi-infinite lattice model, generalizing earlier work
[7] to arbitrary dimensions and providing a more detailed discussion of
the origins of the surface terms. Our analysis leads to extra terms not
accounted for in Eq. (4). In Section 3, we discuss the influence of the extra
terms on predictions of a wetting transition in a ternary mixture and sum-
marize our main results.

2. DERIVATION AND INTERPRETATION OF SURFACE
PARAMETERS FOR TERNARY MIXTURES

We base our study on a simple three-component lattice model which
has molecules of either oil, water, or amphiphile located on each site of
a d-dimensional cubic lattice. The properties of the amphiphile are intro-
duced via a term which reduces the energy of configurations in which an
amphiphile molecule sits between oil and water, but increases the energy in
configurations in which the amphiphile sits between two oil or water mol-
ecules. The model is most conveniently formulated as a spin-1 magnetic
system via a nonlinear variable mapping (see, for example, Ref. 4 for full
details). In this formulation the Hamiltonian for the bulk system, ignoring
surface effects, is

HB = −
∑
〈ij〉

[
JBSiSj +KBS2

i S2
j +CB(S2

i Sj +SiS
2
j )

]

−
∑

i

(HBSi −�BS2
i )−LB

∑
[ijk]

Si(1−S2
j )Sk, (5)
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where the spin variable Si takes the values 1, 0, and −1, representing the
water, amphiphile, and oil molecules, respectively. The parameter LB <0 is
the strength of the amphiphilic interaction, while the coupling constants
JB , KB , CB , HB , and �B can be found in terms of the chemical potentials
of the three components and the various two-particle interactions [4]. The
notation 〈..〉 indicates sums over nearest neighbor sites, and [. . . ] denotes
sums over three linearly adjacent sites. In our analysis, we will assume a
balanced system in which there is symmetry between the oil and water
phases, so that the symmetry breaking fields CB =HB =0.

The Hamiltonian HB is an extended version of the familiar Blume-
Emery-Griffiths (BEG) model with the last term in Eq. (5) providing the
only difference with the standard BEG model [8]. To further extend the
model to include surface effects, we need to add an extra term HS describ-
ing the interactions between spins lying on the surface;

HS = −
∑
〈ij〉

[
JSSiSj +KSS2

i S2
j +CS(S2

i Sj +SiS
2
j )

]

−
∑

i

(HSSi −�SS2
i )−LS

∑
[ijk]

Si(1−S2
j )Sk, (6)

so that the total Hamiltonian for the system is H =HB +HS . In HS the
sums only involve sites on the surface hyperplane, denoted by i = 1. In
general, the surface couplings will differ from their bulk counterparts, and
so the fields CS and HS will not be zero despite the assumed symmetry in
the bulk.

We employ a lattice mean-field approximation in order to calcu-
late the contribution to the mean-field free energy due to the presence
of the surface [9]. In this approach the system is described by the set
{Mi,Qi; i �1} where i is used to label the (d −1)-dimensional hyperplanes
parallel to the surface. Specifically Mi =〈Sj 〉 and Qi =〈S2

j 〉 are the thermo-
dynamic expectation values of Si and S2

i , respectively. Note, the averages
are taken over all sites j in hyperplane i, so that the subscripts of M and
Q refer to the appropriate hyperplane, whereas the subscript of S refers to
the lattice site. Within this approximation the excess surface contact energy
that we seek, FS , can be found as the difference in free energy of the two
situations shown schematically in Fig. 1. In case (I) one considers the free
energy for the semi-infinite system with Mi =M0 and Qi =Q0 for all i >1,
where M0 and Q0 represent the values for a typical homogeneous solution.
In case (II) one determines the free energy of a semi-infinite system with
bulk couplings everywhere and with dangling bonds connecting the surface
spins to spins just outside the surface.
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(I) (II)

Fig. 1. Schematic representation of the two systems discussed in the
main text. Solid and dashed lines correspond to bulk couplings (JB , KB ,
. . . ) and surface couplings (JS , KS , . . . ), respectively, while the index i

identifies the various (d −1)-dimensional hyperplanes.

Following this approach yields

FS(M1,Q1,M0)= −HSM1 + (�S −�B)Q1 −
(

2d −2
2

JS − 2d −1
2

JB

)
M2

1

−
(

2d −2
2

KS − 2d −1
2

KB

)
Q2

1 −2(d −1)CSM1Q1

+LBM0(1−Q1)M1 − (d −1)(LS −LB)(1−Q1)M
2
1 . (7)

In order to connect this expression to the corresponding energy density
in the continuous GL theory, it is appropriate to rewrite FS purely in
terms of M1 and differences of Mi ’s involving the surface hyperplane i =1,
which can be transformed to local gradients when going to the continuous
GL theory. This can be achieved by solving self-consistency equations in
the standard mean-field approximation (details are given in Refs. 7 and 9)
leading to an expansion for Q1 in terms of the surface order parame-
ter M1 and the local difference �M1 ≡M2 −M1. Substituting into Eq. (7)
leads to the appropriate expansion for the surface contact energy,

FS(M1,�M1)=µsM1 +ωsM
2
1 +g1�M1 +gs(�M1)

2 +k1M1�M1, (8)

which defines the various surface parameters. Note the explicit M0 depen-
dence has been adsorbed into the definition of the surface parameters.
From Eq. (8) we can derive the corresponding GL theory energy den-
sity to first approximation by a Taylor expansion of M2 about M1, and
associating M with the order parameter φ. This indicates that the sub-
strate-adsorbate energy proposed in Eq. (4) should be replaced by the
more general form,

Ls [φ1,∇φ1]=µsφ1 +ωsφ
2
1 +g1(∇φ1)·n +gs(∇φ1)

2 +k1φ1(∇φ1)·n, (9)
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where n is the outwardly directed surface normal. Here we have naively
assumed that the surface parameters are not affected by the transformation
from lattice mean-field theory to the continuous GL theory. In practice
one does not expect this to be true, with the parameters in Ls differing
from those in FS by terms proportional to the difference in phase space
from the bulk critical point; however, such modifications are not relevant
for the observations discussed below.

The most notable result of our derivation is the presence of two addi-
tional terms in Ls , one linear in ∇φ1, and one cross term of the form
φ1∇φ1, neither of which can be ignored by simple symmetry consider-
ations. The coefficients of both terms (g1 and k1 respectively) are found to
contain contributions proportional to the surface field and enhancement
of the amphiphile molecules. The local chemical potential µs is typically
dominated by the surface field HS , and a term proportional to the bulk
coupling constant LB . The presence of this term can be anticipated from
the penultimate contribution in Eq. (7), and is directly attributable to the
property of the amphiphile to locally self organize the system (for a non-
amphiphilic ternary mixture, or a mixture with a very weak amphiphile
LB ≈0 and so this contribution would vanish from µs). The enhancement
term ωs accounts for the interactions of all molecules (both oil or water,
and amphiphile) at the surface and their entropy (i.e., missing neighbors),
which in general are different as compared to the bulk. The origin of gs

is one of the main goals of this work, with earlier studies choosing to
interpret gs as the local chemical potential of the amphiphile [5]. While
a contribution of this form (proportional to the effective surface field
�S −�B ) is indeed found, an additional term is also present and is related
to the difference between the interaction couplings (being proportional to
(2d −2)KS − (2d −1)KB ). Thus, in general, gs , g1, and k1 all act both as a
surface field and surface enhancement for the amphiphilic molecules. Full
expansions for all of the surface parameters in d = 3 are given in Ref. 7.
We conclude this section by considering two special cases in further detail.

2.1. Simple Fluid Limit

Firstly we consider the limiting case of a simple fluid aiming to
recover known results for the surface field and enhancement. In this case
the couplings K, C, �, and L in the bulk and surface are identically zero
so that the total Hamiltonian for the system is simply

H=−
∑
〈ij〉

JBSiSj −
∑
〈ij〉

′
JSSiSj −

∑
i

′
HSSi, (10)
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where the primes on the last two sums indicate that only spins in the
surface hyperplane are included. As expected, the variables Qi , which are
directly related to the profile of the amphiphile concentration, drop out of
the results. Only the terms µs and ωs are found to be nonzero; since we
have reduced the problem to the case of a simple fluid we revert to the
notation of Eq. (2) so that h1 =−µs and g =−2ωs are given by

h1 =HS, g = (2d −2)JS − (2d −1)JB. (11)

These findings are in agreement with earlier lattice mean-field results [3],
providing a useful check on the consistency of our approach.

2.2. Symmetric Limit

As noted earlier there are two symmetry breaking surface fields in the
model, HS and CS . Considering the symmetric limit where HS = CS = 0
yields many simplifications, and helps to identify the contributing factors
to the various surface parameters. As discussed above µs does not van-
ish in the symmetric limit but is proportional to LBM0 with a sign depen-
dent on the particular homogeneous phase assumed in the hyperplanes
near the surface. The enhancement ωs is qualitatively unchanged in this
limit as anticipated for a surface enhancement. In contrast g1 vanishes
indicating that this term is completely induced by the symmetry breaking
fields; indeed, one can further show that for any given HS one can find
a CS ∝−HS which yields g1 = 0. Finally, both gs and k1 are of the form
a�(�S −�B)+aK [(2d −2)KS − (2d −1)KB ] with appropriate constants a�

and aK in each case. Thus, both terms play the role of surface field and
enhancement for the amphiphilic molecules independently of the symme-
try breaking fields.

3. DISCUSSION AND CONCLUSIONS

In the previous section we showed that the assumed GL theory sub-
strate-adsorbate energy LS given by Eq. (4) should more generally be
replaced by Eq. (9). Thus, we are naturally led to evaluate how impor-
tant the extra terms in Ls are for predictions of wetting behavior. To this
end we have reanalyzed a recent study of wetting of the wall-microemul-
sion interface by the water-rich phase in a balanced ternary mixture [6,10].
In that study a mean-field analysis predicted a rich surface phase dia-
gram containing first-order and continuous (critical) wetting transitions,
with the critical phase boundary given by a straight line in the (µs , ωs)-
plane. The parameter gs was found to have no qualitative effect with only
minor quantitative differences in the cases where gs >0, gs =0, and gs <0.
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Encouragingly, repeating this analysis with the two extra surface terms
included also leads to only minor quantitative changes in the location of
the phase boundaries (see Ref. 7 for numerical details). The general quali-
tative features of the phase diagram, including the straight critical bound-
ary all remain. The fact that the effect of g1 and k1 is similarly limited as
that of gs may be connected to the similar origins of the three terms as
discussed in Section 2. Should this be the case, one can reasonably antici-
pate that the additional two terms will not play a relevant role in the study
of interfacial behavior in confined ternary mixtures whenever gs is found
to be insignificant.

In conclusion, we have calculated the surface contact energy FS for a
semi-infinite mixture of water, oil, and amphiphile using a simple mean-
field approximation based on a microscopic lattice model. We have shown
that FS can be expressed as an expansion in powers of the surface order
parameter M1 and the local difference �M1. Our calculation suggests that
two additional terms should be added to the standard GL surface free
energy density Ls . The coefficients of these two terms, along with the
parameter gs , are interpreted as combinations of a local chemical potential
and surface enhancement for the amphiphilic molecules. On the basis of
this interpretation, in combination with the study of a particular unbind-
ing transition in a ternary mixture, we believe that the two additional
terms will only be important if gs is also qualitatively relevant.
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